Exametrika を用いた GHQ60 の潜在ランクの推定

「清水裕士・大坊郁夫 (印刷中) 潜在ランク理論による精神的健康の順序的評価 心理学研究」に掲載 されている, Exametrika を用いた GHQ60 の潜在ランクの推定方法を解説します。

◆必要な物をダウンロードする

- Exametrika(exmkj53.exe)
 Exametrika の Web サイト: http://antlers.rd.dnc.ac.jp/~shojima/exmk/jindex.htm
 ※Exametrika は大学入試センターの荘島宏二郎氏が作成したプログラムです。
- GHQの ICRP が保存された zip ファイル(GHQ_ICRP.zip)
 第一著者(清水裕士)の Web サイトからダウンロードできます。
 URL: http://norimune.net/material

zip ファイルの中に, ghq60_ICRP.xlsx が入っています。また, 短縮版用のファイルも用意しています。その場合は, 短縮版の項目数にあったファイルを使用して下さい。例えば GHQ28 の場合は ghq28_ICRP.xlsx です。

◆ghq60_ICRP.xlsx(短縮版の場合は、該当するファイル)にデータを入力する

ghq60_ICRP.xlsx を開いて、DATA シートを表示させます。すると以下のようになっています。

		A	В	С	D	E	F	G	Н	Ι
	1	ID	V1	V2	V3	V4	V5	V6	V7	V8
	2	dummy1	Ιο	0	0	0	0	0	0	
	3	dummy2	1	1	1	1	1	1	1	
	4	dummy3	2	2	2	2	2	2	2	
	5	dummy4	3	3	3	3	3	3	3	
データはこ	こ。 つか 10	ら入力								

dummyのデータは、推定に必要な物なのでそのままにしておいてください。

データは, dummy4の下に回答者ごとに入力してください。変数は 60 個あり, それぞれ GHQ60 の 項目に対応しています。短縮版用のファイルの場合は, それぞれ対応した変数だけ用意してあります。 データは 0,1,2,3 の 4 段階で入力します。また, もし欠損値がある場合は, ピリオド"."を入力しておき ましょう。 ◆Exametrika の使い方

以下では GHQ60 の場合の説明を行いますが、短縮版でも同様の方法で実行できます。 Exametrika を起動すると以下の様な画面が立ち上がります。

Exametrika データ	Version 5.3	3		E	
Excelデータ データ・ワー	マ (xlsx) をウィ クシート	ンドウ上にドラッ ▼ 項	<u>グ& ドロップして</u> 目を選択する		参照
LRT-GTM	LRT-SOM	IRT	ATRISCAL	CDA	
推定の設 2値モラ 潜在ラン 事前 単調 指定し。 IRP固瓦	定 "ル 少数 が分布 1 ¹⁰ かあ り 増加制約 ない ミシート	* 10 *	出力力 一 適 一 観 一 IR 一 IR 一 IR 一 正	⁹ ション 合度指標 測率プロファイル Pガラフ Pカラーリング 答率でソート	レ 分析
			exa Shojima, k www.rd.dnc	((2008-) Exa	trika metrika Ver. 5.3 a/exmk/index.htm

まず,データファイルとして,上でダウンロードした ghq60_ICRP.xlsx を選択します。ファイルをド ラッグ&ドロップすることもできます。

データファイルを選択したら、次にデータが入力されているシートを選択します。データは DATA シートに入っているので、それを選択します。

DATA	一 項	目を選択する]	
DATA	RT	ATRISCAL	CDA	
THEORE		「出力オブ	ションー	
2値モデル	-		合度指標	
潜在ランク数 1	0	11.11111111111111111111111111111111111	則率プロファイル	
事前分布		IRF	グラフ	
● 単調増加制約		IRF	ウラーリング	
指定しない	-	正治	答率でソート	
	Ŧ			分析

シートを選択すると、以下の様な画面が表示されます。そこで、下の図の場所をクリックすると、ID と変数名を認識してくれます。また、欠損値の記号として dot を選択します。

> データの起点を指定してください (dot) ◎ 全項目をチェックする <u>HELP</u> • 🔄 生テータを採点する 💿 全てのチェックを外す ラベル Ν K C1 VЗ √4 ID V1 dummy1 0 0 0 0 dummy2 1 1 1 1 dummy3 2 2 2 2 dummy4 З З З З F. • 4 戻る データの起点を指定してください (dot) • ◎ 全項目をチェックする <u>HELP</u> 📄 生データを採点する ◎ 全てのチェックを外す 変数1 変数2 変数3 変数4 🔺 ID ラベル N K C1 ID うべ ル V1 $\sqrt{4}$ 受検者1 dummy1 0 0 0 受検者2 dummy2 1 1 1 1 2 2 2 受検者3 dummy3 2 受検者4 З 3 З З dummy4 受検者5 受検者6 受検者7 受検者8 受検者9 受検者10 受検者11 受検者12 戻る セット セット

続いて、下にある「セット」をクリックすると、データを読み込みます。

う析する項目を選択してください						1.1	-		1	-	-	-		
(dot) ● 全項目をチェックする HELP □ 生デーダを採点する ● 全てのチェックを外す								HELP						
	ID	変数1	変数2	変数3	変数4	*	ラベル	N	к	C1	02	C3	C4	
ラベル	ID	V1	V2	V3	√4		✓ V1	4	4	0	1	2	3	
受検者1	dummy1		0	0	0		✓ V2	4	4	0	1	2	3	=
受検者2	dummy2	1	1	1	1		▼ ∨3	4	4	0	1	2	3	
受検者3	dummy3	2	2	2	2	Ε	✓ V4	4	4	0	1	2	3	
受検者4	dummy4	3	3	3	3		V5	4	4	0	1	2	3	
受検者5							✓ V6	4	4	0	1	2	з	
受検者6							✓ V7	4	4	0	1	2	з	
受検者7							 √8	4	4	0	1	2	3	
受検者8							V9	4	4	0	1	2	з	
受検者9							🔽 V10	4	4	0	1	2	з	
受検者10							🗹 V11	4	4	0	1	2	з	
受検者11							V12	4	4	0	1	2	з	
受検者12						Ŧ	V13	4	4	0	1	2	3	-
() () 展る ゼット (12%)														

カテゴリ数が4段階(0~3)になっていることを確認して、右側の「セット」ボタンを押します。

次に、LRT-SOM タブを選択し、以下のように設定します。

- ・推定の設定で、段階モデルを選択
- ・潜在ランク数を4に指定
- ・事前分布を「指定しない」を選ぶ
- ・IRP 固定シートで、「ICRP」のシートを選択
- ・出力オプションを全部クリックする

Exametrika Version 5.3	-
データ D#Dropbox¥Analysis¥エグザメトリ力¥GH0¥ehq60_JCRP.xlsx 参照 DATA マ 項目を選択する	
LRT-GTM LRT-SOM IRT ATRISCAL CDA	7
推定の設定 段階モデル	
潜在ランク数 4 ☑ 観測率プロファイル □ 事前分布 ☑ IRPグラフ	
 □ 単調増加制約 ☑ IRPカラーリング 指定しない ☑ 正答率でソート 	
ICRP IRP固定2~ト 分析 ICRP	
Shojima, K. (2008-) Exametrika Ver. 5.3 www.rd.dnc.ac.jp/~shojima/ex.mk/index.htm	1

ICRP シートを選ぶと、以下の様な画面が表示されます。確認して、セットをクリックします。この ICPR 得点は、清水・大坊(2014)によって推定されたものです。これをセットすることによって、清 水・大坊(2014)と同じ方法で潜在ランクを推定できます。

項目	カテゴリ	Rank 1	Rank 2	Rank 3	Rank 4	<u>^</u>
V1	0	0.2217	0.1345	0.0681	0.0433	Ξ
	1	0.7158	0.7024	0.5822	0.4354	
	2	0.0597	0.1511	0.3003	0.41.69	
	3	0.0027	0.01.21	0.0495	0.1045	
V2	0	0.5732	0.4784	0.3829	0.3091	
	1	0.2373	0.2546	0.2461	0.2324	
	2	0.1735	0.2368	0.2942	0.3402	
	3	0.0160	0.0302	0.0768	0.1182	1
V3	0	0.1838	0.0881	0.0286	0.0137	
	1	0.3955	0.3340	0.2034	0.1105	
	2	0.4013	0.5273	0.6242	0.6240	1
	3	0.0194	0.0505	0.1437	0.2519	
∨4	0	0.5330	0.3797	0.2336	0.1498	
	1	0.3313	0.3790	0.3788	0.3704	
	2	0.1286	0.2170	0.3206	0.3583	
	3	0.0071	0.0243	0.0671	0.1215	
V5	0	0.4651	0.3581	0.2503	0.1647	
	1	0.2504	0.2748	0.260	0.7564	

最後に、「分析」ボタンをクリックすれば、推定が始まります。

Exametrika Version 5.3	
データ D¥Dropbox¥Analysis¥エグザメトリカ¥GH DATA ・ 項し	IQ¥ehq60_ICRP×lsx 参照 目を選択する
LRT-GTM LRT-SOM IRT 推定の設定 段階モデル ▼ 潜在ランウ数 4 事前分布 単調増加制約 指定しない ▼	ATRISCAL CDA 出力オプション ジ 通合度指標 ジ 観測率プロファイル ジ IRPグラフ ジ IRPカラーリング ジ 正答率でソート
「IRP固定ジート ・	分析 exametrika Shojima, K. (2008-) Exametrika Ver. 5.3 www.rd.dnc.ac.ip/"shojima/exmk/index.htm

推定した回答者の潜在ランクとランクメンバーシッププロファイルは,「Examinee」のシートに出力 されます。ただし, dummy1~dummy4の結果は無視してください。